Chevron Left
返回到 Machine Learning in the Enterprise

學生對 Google 云端平台 提供的 Machine Learning in the Enterprise 的評價和反饋

4.6
1,403 個評分

課程概述

This course encompasses a real-world practical approach to the ML Workflow: a case study approach that presents an ML team faced with several ML business requirements and use cases. This team must understand the tools required for data management and governance and consider the best approach for data preprocessing: from providing an overview of Dataflow and Dataprep to using BigQuery for preprocessing tasks. The team is presented with three options to build machine learning models for two specific use cases. This course explains why the team would use AutoML, BigQuery ML, or custom training to achieve their objectives. A deeper dive into custom training is presented in this course. We describe custom training requirements from training code structure, storage, and loading large datasets to exporting a trained model. You will build a custom training machine learning model, which allows you to build a container image with little knowledge of Docker. The case study team examines hyperparameter tuning using Vertex Vizier and how it can be used to improve model performance. To understand more about model improvement, we dive into a bit of theory: we discuss regularization, dealing with sparsity, and many other essential concepts and principles. We end with an overview of prediction and model monitoring and how Vertex AI can be used to manage ML models....

熱門審閱

MB

2018年12月30日

thanks for the great work. There is so much to learn and I appreciate the effort you made to break things down and providing lab while making the hard decisions on what to commit.

MK

2020年6月6日

This course is so really good to learn about the general knowledge and skill of Data Science like optimization batch or regularization and so on with Google Cloud Platform.

篩選依據:

76 - Machine Learning in the Enterprise 的 100 個評論(共 119 個)

創建者 Naman M

2019年8月19日

Awesome

創建者 Kamlesh C

2020年6月13日

Thanks

創建者 Somaiya J G

2018年11月14日

finest

創建者 Gustavo M

2018年8月17日

Thanks

創建者 Phạm V T

2020年4月17日

Great

創建者 Manish K

2019年8月28日

great

創建者 MOHD N B A L

2020年11月24日

good

創建者 Dr. P S J

2020年7月25日

good

創建者 Balasubramanian T K

2020年4月13日

Nice

創建者 AMARTHALURU N K

2019年12月3日

good

創建者 Mirza s N

2019年9月18日

good

創建者 Fathima j

2019年5月11日

good

創建者 Bielushkin M

2018年11月23日

nice

創建者 Atichat P

2018年6月4日

Good

創建者 Fuat A

2020年3月20日

Google provided with me an opportunity to take the specialization for free. Many thanks.

Just a comment: Labs were great. But, it takes long when i needed to start a lab, i.e. Opening a Google account every time and starting a vm. So, it would be great if i could use the same vm for more than one lab assignment.

創建者 Carlos V

2018年7月1日

Excellent Course, in the Art and Science of Machine Learning, I quite enjoyed the Hyperparameter tuning in the Cloud and all the advanced tips to improve the models performance, thanks Coursera and Google

創建者 Robert L

2020年4月7日

Sufficient theory to understand the basis of the ML approach with practical insights to help get started with building models

創建者 Vishal K

2018年7月15日

Nice course however I think it suits folks who have good exposure of ML to take complete advantage of the techniques

創建者 Yuan L

2021年4月17日

Great content. The course would be better if all the labs are up to date and include all necessary setup scripts.

創建者 Phillip

2020年8月16日

The course is difficult. You may need to review some sections because off the amount of information.

創建者 Manish G

2019年7月30日

The course is quite good and have balance of theory and labs. It is useful course for beginners.

創建者 Phac L T

2018年8月1日

It would be nice to have more complex datasets where predictions would be more meaningful.

創建者 Oleg O

2018年10月20日

Very good course, but probably requires some more hand-on practice

創建者 Joel M

2018年12月12日

good lessons and in depth coverage of a range of issues

創建者 Hugo H

2020年4月3日

Good course, pragmatic and full of practical exercises